Package: hspm 1.1-5
hspm: Heterogeneous Spatial Models
Spatial heterogeneity can be specified in various ways. 'hspm' is an ambitious project that aims at implementing various methodologies to control for heterogeneity in spatial models. The current version of 'hspm' deals with spatial and (non-spatial) regimes models. In particular, the package allows to estimate a general spatial regimes model with additional endogenous variables, specified in terms of a spatial lag of the dependent variable, the spatially lagged regressors, and, potentially, a spatially autocorrelated error term. Spatial regime models are estimated by instrumental variables and generalized methods of moments (see Arraiz et al., (2010) <doi:10.1111/j.1467-9787.2009.00618.x>, Bivand and Piras, (2015) <doi:10.18637/jss.v063.i18>, Drukker et al., (2013) <doi:10.1080/07474938.2013.741020>, Kelejian and Prucha, (2010) <doi:10.1016/j.jeconom.2009.10.025>).
Authors:
hspm_1.1-5.tar.gz
hspm_1.1-5.zip(r-4.5)hspm_1.1-5.zip(r-4.4)hspm_1.1-5.zip(r-4.3)
hspm_1.1-5.tgz(r-4.4-any)hspm_1.1-5.tgz(r-4.3-any)
hspm_1.1-5.tar.gz(r-4.5-noble)hspm_1.1-5.tar.gz(r-4.4-noble)
hspm_1.1-5.tgz(r-4.4-emscripten)hspm_1.1-5.tgz(r-4.3-emscripten)
hspm.pdf |hspm.html✨
hspm/json (API)
# Install 'hspm' in R: |
install.packages('hspm', repos = c('https://gpiras.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/gpiras/hspm/issues
Last updated 1 years agofrom:ba46eb679e. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | WARNING | Nov 01 2024 |
R-4.5-linux | WARNING | Nov 01 2024 |
R-4.4-win | WARNING | Nov 01 2024 |
R-4.4-mac | WARNING | Nov 01 2024 |
R-4.3-win | WARNING | Nov 01 2024 |
R-4.3-mac | WARNING | Nov 01 2024 |
Exports:hsar2slshsarMLivregimesregimesspregimes
Dependencies:abindbackportsbdsmatrixbootbroomcarcarDataclassclassIntclicodacodetoolscollapsecolorspacecowplotcpp11data.tableDBIdeldirDerivdigestdoBydplyre1071fansifarverFormulagenericsggplot2gluegtableisobandjsonliteKernSmoothlabelinglatticeLearnBayeslifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmaxLikmemiscmgcvmicrobenchmarkminqamiscToolsmodelrmultcompmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplmproxypurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackrlangs2sandwichscalessfspSparseMspatialregspDataspdepsphetspldvstringistringrsurvivalTH.datatibbletidyrtidyselectunitsutf8vctrsviridisLitewithrwkyamlzoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Baltimore house sales prices and hedonics | baltim |
Estimation of HSAR models by 2SLS | hsar2sls print.summary.hsar2sls summary.hsar2sls |
Estimation of HSAR models by Quasi-Maximum Likelihood | coef.hsarML hsarML print.summary.hsarML summary.hsarML |
Estimation of regime models with endogenous variables | ivregimes |
US Counties Homicides data | natreg |
Estimation of regimes models | regimes |
Estimation of spatial regimes models | coef.spregimes fitted.spregimes print.spregimes print.summary.spregimes residuals.spregimes spregimes summary.spregimes vcov.spregimes |
Spatial weighting matrix for the US Counties Homicides data | ws_6 |